![]() | Contents submitted by D-platform to u/D-platform [link] [comments]
Introduction Proof of Work (commonly abbreviated to PoW) is a mechanism for preventing double-spends. Most major cryptocurrencies use this as their consensus algorithm. That’s just what we call a method for securing the cryptocurrency’s ledger. Proof of Work was the first consensus algorithm to surface, and, to date, remains the dominant one. It was introduced by Satoshi Nakamoto in the 2008 Bitcoin white paper, but the technology itself was conceived long before then. Adam Back’s HashCash is an early example of a Proof of Work algorithm in the pre-cryptocurrency days. By requiring senders to perform a small amount of computing before sending an email, receivers could mitigate spam. This computation would cost virtually nothing to a legitimate sender, but quickly add up for someone sending emails en masse. What is a double-spend?A double-spend occurs when the same funds are spent more than once. The term is used almost exclusively in the context of digital money — after all, you’d have a hard time spending the same physical cash twice. When you pay for a coffee today, you hand cash over to a cashier who probably locks it in a register. You can’t go to the coffee shop across the road and pay for another coffee with the same bill.In digital cash schemes, there’s the possibility that you could. You’ve surely duplicated a computer file before — you just copy and paste it. You can email the same file to ten, twenty, fifty people. Since digital money is just data, you need to prevent people from copying and spending the same units in different places. Otherwise, your currency will collapse in no time. For a more in-depth look at double-spending, check out Double Spending Explained. Why is Proof of Work necessary?If you’ve read our guide to blockchain technology, you’ll know that users broadcast transactions to the network. Those transactions aren’t immediately considered valid, though. That only happens when they get added to the blockchain.The blockchain is a big database that every user can see, so they can check if funds have been spent before. Picture it like this: you and three friends have a notepad. Anytime one of you wants to make a transfer of whatever units you’re using, you write it down — Alice pays Bob five units, Bob pays Carol two units, etc. There’s another intricacy here — each time you make a transaction, you refer to the transaction where the funds came from. So, if Bob was paying Carol with two units, the entry would actually look like the following: Bob pays Carol two units from this earlier transaction with Alice. Now, we have a way to track the units. If Bob tries to make another transaction using the same units he just sent to Carol, everyone will know immediately. The group won’t allow the transaction to be added to the notepad. Now, this might work well in a small group. Everyone knows each other, so they’ll probably agree on which of the friends should add transactions to the notepad. What if we want a group of 10,000 participants? The notepad idea doesn’t scale well, because nobody wants to trust a stranger to manage it. This is where Proof of Work comes in. It ensures that users aren’t spending money that they don’t have the right to spend. By using a combination of game theory and cryptography, a PoW algorithm enables anyone to update the blockchain according to the rules of the system. How does PoW work?Our notepad above is the blockchain. But we don’t add transactions one by one — instead, we lump them into blocks. We announce the transactions to the network, then users creating a block will include them in a candidate block. The transactions will only be considered valid once their candidate block becomes a confirmed block, meaning that it has been added to the blockchain.Appending a block isn’t cheap, however. Proof of Work requires that a miner (the user creating the block) uses up some of their own resources for the privilege. That resource is computing power, which is used to hash the block’s data until a solution to a puzzle is found. Hashing the block’s data means that you pass it through a hashing function to generate a block hash. The block hash works like a “fingerprint” — it’s an identity for your input data and is unique to each block. It’s virtually impossible to reverse a block hash to get the input data. Knowing an input, however, it’s trivial for you to confirm that the hash is correct. You just have to submit the input through the function and check if the output is the same. In Proof of Work, you must provide data whose hash matches certain conditions. But you don’t know how to get there. Your only option is to pass your data through a hash function and to check if it matches the conditions. If it doesn’t, you’ll have to change your data slightly to get a different hash. Changing even one character in your data will result in a totally different result, so there’s no way of predicting what an output might be. As a result, if you want to create a block, you’re playing a guessing game. You typically take information on all of the transactions that you want to add and some other important data, then hash it all together. But since your dataset won’t change, you need to add a piece of information that is variable. Otherwise, you would always get the same hash as output. This variable data is what we call a nonce. It’s a number that you’ll change with every attempt, so you’re getting a different hash every time. And this is what we call mining. Summing up, mining is the process of gathering blockchain data and hashing it along with a nonce until you find a particular hash. If you find a hash that satisfies the conditions set out by the protocol, you get the right to broadcast the new block to the network. At this point, the other participants of the network update their blockchains to include the new block. For major cryptocurrencies today, the conditions are incredibly challenging to satisfy. The higher the hash rate on the network, the more difficult it is to find a valid hash. This is done to ensure that blocks aren’t found too quickly. As you can imagine, trying to guess massive amounts of hashes can be costly on your computer. You’re wasting computational cycles and electricity. But the protocol will reward you with cryptocurrency if you find a valid hash. Let’s recap what we know so far:
That’s where public-key cryptography comes in. We won’t go into depth in this article, but check out What is Public-Key Cryptography? for a comprehensive look at it. In short, we use some neat cryptographic tricks that allow any user to verify whether someone has a right to move the funds they’re attempting to spend. When you create a transaction, you sign it. Anyone on the network can compare your signature with your public key, and check whether they match. They’ll also check if you can actually spend your funds and that the sum of your inputs is higher than the sum of your outputs (i.e., that you’re not spending more than you have). Any block that includes an invalid transaction will be automatically rejected by the network. It’s expensive for you to even attempt to cheat. You’ll waste your own resources without any reward. Therein lies the beauty of Proof of Work: it makes it expensive to cheat, but profitable to act honestly. Any rational miner will be seeking ROI, so they can be expected to behave in a way that guarantees revenue. Proof of Work vs. Proof of StakeThere are many consensus algorithms, but one of the most highly-anticipated ones is Proof of Stake (PoS). The concept dates back to 2011, and has been implemented in some smaller protocols. But it has yet to see adoption in any of the big blockchains.In Proof of Stake systems, miners are replaced with validators. There’s no mining involved and no race to guess hashes. Instead, users are randomly selected — if they’re picked, they must propose (or “forge”) a block. If the block is valid, they’ll receive a reward made up of the fees from the block’s transactions. Not just any user can be selected, though — the protocol chooses them based on a number of factors. To be eligible, participants must lock up a stake, which is a predetermined amount of the blockchain’s native currency. The stake works like bail: just as defendants put up a large sum of money to disincentivize them from skipping trial, validators lock up a stake to disincentivize cheating. If they act dishonestly, their stake (or a portion of it) will be taken. Proof of Stake does have some benefits over Proof of Work. The most notable one is the smaller carbon footprint — since there’s no need for high-powered mining farms in PoS, the electricity consumed is only a fraction of that consumed in PoW. That said, it has nowhere near the track record of PoW. Although it could be perceived as wasteful, mining is the only consensus algorithm that’s proven itself at scale. In just over a decade, it has secured trillions of dollars worth of transactions. To say with certainty whether PoS can rival its security, staking needs to be properly tested in the wild. Closing thoughtsProof of Work was the original solution to the double-spend problem and has proven to be reliable and secure. Bitcoin proved that we don’t need centralized entities to prevent the same funds from being spent twice. With clever use of cryptography, hash functions, and game theory, participants in a decentralized environment can agree on the state of a financial database. |
![]() |
https://preview.redd.it/s2gmpmeze3151.png?width=256&format=png&auto=webp&s=9759910dd3c4a15b83f55b827d1899fb2fdd3de1 1. What is Bitcoin (BTC)?
2. Bitcoin’s core featuresFor a more beginner’s introduction to Bitcoin, please visit Binance Academy’s guide to Bitcoin.Unspent Transaction Output (UTXO) modelA UTXO transaction works like cash payment between two parties: Alice gives money to Bob and receives change (i.e., unspent amount). In comparison, blockchains like Ethereum rely on the account model.https://preview.redd.it/t1j6anf8f3151.png?width=1601&format=png&auto=webp&s=33bd141d8f2136a6f32739c8cdc7aae2e04cbc47 Nakamoto consensusIn the Bitcoin network, anyone can join the network and become a bookkeeping service provider i.e., a validator. All validators are allowed in the race to become the block producer for the next block, yet only the first to complete a computationally heavy task will win. This feature is called Proof of Work (PoW).The probability of any single validator to finish the task first is equal to the percentage of the total network computation power, or hash power, the validator has. For instance, a validator with 5% of the total network computation power will have a 5% chance of completing the task first, and therefore becoming the next block producer. Since anyone can join the race, competition is prone to increase. In the early days, Bitcoin mining was mostly done by personal computer CPUs. As of today, Bitcoin validators, or miners, have opted for dedicated and more powerful devices such as machines based on Application-Specific Integrated Circuit (“ASIC”). Proof of Work secures the network as block producers must have spent resources external to the network (i.e., money to pay electricity), and can provide proof to other participants that they did so. With various miners competing for block rewards, it becomes difficult for one single malicious party to gain network majority (defined as more than 51% of the network’s hash power in the Nakamoto consensus mechanism). The ability to rearrange transactions via 51% attacks indicates another feature of the Nakamoto consensus: the finality of transactions is only probabilistic. Once a block is produced, it is then propagated by the block producer to all other validators to check on the validity of all transactions in that block. The block producer will receive rewards in the network’s native currency (i.e., bitcoin) as all validators approve the block and update their ledgers. The blockchainBlock productionThe Bitcoin protocol utilizes the Merkle tree data structure in order to organize hashes of numerous individual transactions into each block. This concept is named after Ralph Merkle, who patented it in 1979.With the use of a Merkle tree, though each block might contain thousands of transactions, it will have the ability to combine all of their hashes and condense them into one, allowing efficient and secure verification of this group of transactions. This single hash called is a Merkle root, which is stored in the Block Header of a block. The Block Header also stores other meta information of a block, such as a hash of the previous Block Header, which enables blocks to be associated in a chain-like structure (hence the name “blockchain”). An illustration of block production in the Bitcoin Protocol is demonstrated below. https://preview.redd.it/m6texxicf3151.png?width=1591&format=png&auto=webp&s=f4253304912ed8370948b9c524e08fef28f1c78d Block time and mining difficultyBlock time is the period required to create the next block in a network. As mentioned above, the node who solves the computationally intensive task will be allowed to produce the next block. Therefore, block time is directly correlated to the amount of time it takes for a node to find a solution to the task. The Bitcoin protocol sets a target block time of 10 minutes, and attempts to achieve this by introducing a variable named mining difficulty.Mining difficulty refers to how difficult it is for the node to solve the computationally intensive task. If the network sets a high difficulty for the task, while miners have low computational power, which is often referred to as “hashrate”, it would statistically take longer for the nodes to get an answer for the task. If the difficulty is low, but miners have rather strong computational power, statistically, some nodes will be able to solve the task quickly. Therefore, the 10 minute target block time is achieved by constantly and automatically adjusting the mining difficulty according to how much computational power there is amongst the nodes. The average block time of the network is evaluated after a certain number of blocks, and if it is greater than the expected block time, the difficulty level will decrease; if it is less than the expected block time, the difficulty level will increase. What are orphan blocks?In a PoW blockchain network, if the block time is too low, it would increase the likelihood of nodes producingorphan blocks, for which they would receive no reward. Orphan blocks are produced by nodes who solved the task but did not broadcast their results to the whole network the quickest due to network latency.It takes time for a message to travel through a network, and it is entirely possible for 2 nodes to complete the task and start to broadcast their results to the network at roughly the same time, while one’s messages are received by all other nodes earlier as the node has low latency. Imagine there is a network latency of 1 minute and a target block time of 2 minutes. A node could solve the task in around 1 minute but his message would take 1 minute to reach the rest of the nodes that are still working on the solution. While his message travels through the network, all the work done by all other nodes during that 1 minute, even if these nodes also complete the task, would go to waste. In this case, 50% of the computational power contributed to the network is wasted. The percentage of wasted computational power would proportionally decrease if the mining difficulty were higher, as it would statistically take longer for miners to complete the task. In other words, if the mining difficulty, and therefore targeted block time is low, miners with powerful and often centralized mining facilities would get a higher chance of becoming the block producer, while the participation of weaker miners would become in vain. This introduces possible centralization and weakens the overall security of the network. However, given a limited amount of transactions that can be stored in a block, making the block time too longwould decrease the number of transactions the network can process per second, negatively affecting network scalability. 3. Bitcoin’s additional featuresSegregated Witness (SegWit)Segregated Witness, often abbreviated as SegWit, is a protocol upgrade proposal that went live in August 2017.SegWit separates witness signatures from transaction-related data. Witness signatures in legacy Bitcoin blocks often take more than 50% of the block size. By removing witness signatures from the transaction block, this protocol upgrade effectively increases the number of transactions that can be stored in a single block, enabling the network to handle more transactions per second. As a result, SegWit increases the scalability of Nakamoto consensus-based blockchain networks like Bitcoin and Litecoin. SegWit also makes transactions cheaper. Since transaction fees are derived from how much data is being processed by the block producer, the more transactions that can be stored in a 1MB block, the cheaper individual transactions become. https://preview.redd.it/depya70mf3151.png?width=1601&format=png&auto=webp&s=a6499aa2131fbf347f8ffd812930b2f7d66be48e The legacy Bitcoin block has a block size limit of 1 megabyte, and any change on the block size would require a network hard-fork. On August 1st 2017, the first hard-fork occurred, leading to the creation of Bitcoin Cash (“BCH”), which introduced an 8 megabyte block size limit. Conversely, Segregated Witness was a soft-fork: it never changed the transaction block size limit of the network. Instead, it added an extended block with an upper limit of 3 megabytes, which contains solely witness signatures, to the 1 megabyte block that contains only transaction data. This new block type can be processed even by nodes that have not completed the SegWit protocol upgrade. Furthermore, the separation of witness signatures from transaction data solves the malleability issue with the original Bitcoin protocol. Without Segregated Witness, these signatures could be altered before the block is validated by miners. Indeed, alterations can be done in such a way that if the system does a mathematical check, the signature would still be valid. However, since the values in the signature are changed, the two signatures would create vastly different hash values. For instance, if a witness signature states “6,” it has a mathematical value of 6, and would create a hash value of 12345. However, if the witness signature were changed to “06”, it would maintain a mathematical value of 6 while creating a (faulty) hash value of 67890. Since the mathematical values are the same, the altered signature remains a valid signature. This would create a bookkeeping issue, as transactions in Nakamoto consensus-based blockchain networks are documented with these hash values, or transaction IDs. Effectively, one can alter a transaction ID to a new one, and the new ID can still be valid. This can create many issues, as illustrated in the below example:
Since the transaction malleability issue is fixed, Segregated Witness also enables the proper functioning of second-layer scalability solutions on the Bitcoin protocol, such as the Lightning Network. Lightning NetworkLightning Network is a second-layer micropayment solution for scalability.Specifically, Lightning Network aims to enable near-instant and low-cost payments between merchants and customers that wish to use bitcoins. Lightning Network was conceptualized in a whitepaper by Joseph Poon and Thaddeus Dryja in 2015. Since then, it has been implemented by multiple companies. The most prominent of them include Blockstream, Lightning Labs, and ACINQ. A list of curated resources relevant to Lightning Network can be found here. In the Lightning Network, if a customer wishes to transact with a merchant, both of them need to open a payment channel, which operates off the Bitcoin blockchain (i.e., off-chain vs. on-chain). None of the transaction details from this payment channel are recorded on the blockchain, and only when the channel is closed will the end result of both party’s wallet balances be updated to the blockchain. The blockchain only serves as a settlement layer for Lightning transactions. Since all transactions done via the payment channel are conducted independently of the Nakamoto consensus, both parties involved in transactions do not need to wait for network confirmation on transactions. Instead, transacting parties would pay transaction fees to Bitcoin miners only when they decide to close the channel. https://preview.redd.it/cy56icarf3151.png?width=1601&format=png&auto=webp&s=b239a63c6a87ec6cc1b18ce2cbd0355f8831c3a8 One limitation to the Lightning Network is that it requires a person to be online to receive transactions attributing towards him. Another limitation in user experience could be that one needs to lock up some funds every time he wishes to open a payment channel, and is only able to use that fund within the channel. However, this does not mean he needs to create new channels every time he wishes to transact with a different person on the Lightning Network. If Alice wants to send money to Carol, but they do not have a payment channel open, they can ask Bob, who has payment channels open to both Alice and Carol, to help make that transaction. Alice will be able to send funds to Bob, and Bob to Carol. Hence, the number of “payment hubs” (i.e., Bob in the previous example) correlates with both the convenience and the usability of the Lightning Network for real-world applications. Schnorr Signature upgrade proposalElliptic Curve Digital Signature Algorithm (“ECDSA”) signatures are used to sign transactions on the Bitcoin blockchain.https://preview.redd.it/hjeqe4l7g3151.png?width=1601&format=png&auto=webp&s=8014fb08fe62ac4d91645499bc0c7e1c04c5d7c4 However, many developers now advocate for replacing ECDSA with Schnorr Signature. Once Schnorr Signatures are implemented, multiple parties can collaborate in producing a signature that is valid for the sum of their public keys. This would primarily be beneficial for network scalability. When multiple addresses were to conduct transactions to a single address, each transaction would require their own signature. With Schnorr Signature, all these signatures would be combined into one. As a result, the network would be able to store more transactions in a single block. https://preview.redd.it/axg3wayag3151.png?width=1601&format=png&auto=webp&s=93d958fa6b0e623caa82ca71fe457b4daa88c71e The reduced size in signatures implies a reduced cost on transaction fees. The group of senders can split the transaction fees for that one group signature, instead of paying for one personal signature individually. Schnorr Signature also improves network privacy and token fungibility. A third-party observer will not be able to detect if a user is sending a multi-signature transaction, since the signature will be in the same format as a single-signature transaction. 4. Economics and supply distributionThe Bitcoin protocol utilizes the Nakamoto consensus, and nodes validate blocks via Proof-of-Work mining. The bitcoin token was not pre-mined, and has a maximum supply of 21 million. The initial reward for a block was 50 BTC per block. Block mining rewards halve every 210,000 blocks. Since the average time for block production on the blockchain is 10 minutes, it implies that the block reward halving events will approximately take place every 4 years.As of May 12th 2020, the block mining rewards are 6.25 BTC per block. Transaction fees also represent a minor revenue stream for miners. |
![]() | Shreemoon Rajbhandari submitted by Shreemoon to loopringorg [link] [comments] My Intern Experience During my time as an undergraduate, one of the key experiences recommended is to do an internship. Gaining work experience as an intern overseas will improve a skill set in my area of interest. Working somewhere as culturally different and economically significant as China is a talking point in any interviews. There are many reasons that made me choose to do an internship in China. Definitively the best part of the experience has been living out of your comfort zone. Encountering new situations and experiences, that increase my self awareness, my capabilities and also to discover my weaknesses. Over the past 2 years, we have seen many digital currencies/cryptocurrencies being introduced globally.These have added the aspect of using this financial ecosystem to eventually solve social issues. This could be the application of Blockchain technology in areas like logistics/supply chain to food security. Eventually, there would be many more areas where blockchain and related technology developers would be needed. It's emerging to change the way we solve the many roadblocks that we face. Blockchain is considered to be one of the most trending topics. This is the right time for me to learn about the technology and start implementing. Blockchain is a notion that can be implemented directly or indirectly to any sector as such. Only two months prior, I had a minimal amount of knowledge about blockchain innovation, and my insight into blockchain comprised distinctly of an obscure comprehension of bitcoin and cryptographic money all in all. During my internship, I was given investigation material to help assemble my base comprehension of Loopring and the blockchain innovation that it depends on. In the wake of beginning at Loopring, I have been given significantly more prominent chance to learn. While my comprehension of blockchain is still new, it has improved extensively since my first day at the organisation. In this post, I would like to talk about two cryptographic methods aiming to give privacy to blockchain technology ; the zk-SNARKS and zk-STARKS protocols are two significant examples. We will look into their advantages and disadvantages, comparison between two protocols, and conclusion. ZK-SNARKS vs ZK-STARKS Along with the countless benefits of the Internet from which we can benefit, when we use it for social media or business company purposes, privacy is at greater risk. Approximately 90 million of Facebook users information were damaged by Cambridge Analytical data. The Wall Street stated that “ this is just the beginning, and the results are expected to grow”. The Equifax data breach revealed information on social media channels from private users. Thus, birth dates were exposed to the majority of the populations. Due to the Uber hack, data from over 55 million customers were also shared and exposed. Privacy has consistently been seen as a valuable element within the cryptocurrency community. There is always a growing focus on improving privacy within the cryptocurrency space. Bitcoin, Ethereum, Litecoin and many other cryptocurrencies are all actively searching for the most convenient approaches to increase their security. It is the antecedent to fungibility, which is vital for a broadly used form of money. Additionally, most crypto-asset holders do not want their transaction history to be completely public to the world. Among the different cryptographic methods aiming to give privacy to blockchain technology; the zk-SNARK and zk-STARKS protocols are two main significant examples. Two leading technologies today offer their cryptocurrencies - Monero and zcash— and strive to address protection issues. Monero uses the technology of Ring Confidential Signature. By contrast, Z-Cash uses zk-SNARK( Zero-Knowledge transparent knowledge argument), a technology that provides the ability to conduct anonymous transactions. In recent years, zk-SNARKS has exploded as the most promising technology to solve blockchain privacy. It is a technology derived from proofs of zero-knowledge, a type of proof that anyone with a verification key can check this “proof” without disclosing the information itself. If the statement holds, a verifier will be convinced by a correct proof. If the statement is false, it is true that no prover can convince a verified statement. zk-SNARK stands for : - Zero-knowledge : if the statement is true, there is nothing the verifier learns beyond the fact that the statement is true. - Succinct : The proof size needs to be small enough in a few milliseconds to be verified. - Non-interactive :Only one set of information is sent to the verifier for verification, therefore there is no back and forth communication between the prover and verifier. - Argument of Knowledge : A computationally soundproof: soundness runs counter to a prover leveraging polynomial-time, i.e. limited computing. Also, Without access to the witness (the private input needed to prove the statement), the evidence can not be constructed. zk-SNARKS aims to provide fast, scalable solutions to ensure financial security. Therefore, transaction encryption is possible.When zk-SNARK is applied to a cryptocurrency, it implies you can conceal the majority of the transaction data information. This incorporates the sender address, collector address, just as the transaction sum amount. zk-SNARKS enables us to shroud the majority of this data information, while likewise enabling the system to affirm and verify the transactions. It amplifies security while maintaining consensus. In the realm of blockchain, it is one of the most exceptional blockchain level protection innovation being used. With the launch of version 3.0, Loopring’s decentralised protocol solution struck a noteworthy milestone in early May- adding off-chain scaling and fee optimisation using zk-SNARKs. Low fees, liquidity, transparency and security are the key goal of the loopring solution. Loopring says the new Loopring 3.0 based zk-SNARK will increase trade speeds and on-chain activity efficiency tenfold. The data previously stored on-chain in Loopring 3.0 is now stored off-chain in a Merkle tree and then used as required in zk-SNARKS, updating the tree. Be that as it may, there are a few issues with zk-SNARKS. The main problem has been the need for a trusted setup. zk-SNARKS rely on a permission private key. This essentially undermines the entire purpose of decentralised public blockchain. By introducing the need to trust a person rather than code, you threaten the entire concept of trustlessness. In theory, a prover with sufficient computational power could create fake proofs, and this is one of the reasons why many consider quantum computers as a threat to zk-SNARKs (and blockchain systems). Last year zk-SNARKS were incorporated on a MIT Tech Review list of the top 10 Breakthrough Technologies of 2018 among AI advancements. zk-SNARKS allows both a tremendous speedup in verifying the correctness of a computation while at the same time it hides the private details from prying eyes. Some of the potential uses citied in MIT article were verifying you’re over 18 without having to share your date of birth, and providing you have a enough money in your back account as collateral without having to give away account details like your exact balance. It establishes trust which you need to interact on the blockchain. Zk-SNARK proofs are as of now being used on Zcash, on JP Morgan Pursue's blockchain-based payment system, and as an approach to safely validate customers to servers. The more developed version of zk-SNARKS is called zk-STARKS which stands for : Zero-Knowledge Scalable Transparent Argument of Knowledge zk-STARKS verifications are currently being touted as the better than ever form of the convention, tending to a considerable lot of the past disadvantages of zk-SNARKs. It has demonstrated an approach to accomplish a similar degree of privacy as zk-SNARKS without the requirement for the trusted setup. Starks are practically superior to Snarks as they require weaker crypto suppositions, they don't require a trusted setup and are post-quantum resistant. zk-SNARKs are based on Elliptic-Curve Cryptography, which is susceptible to advances in Quantum-Computers. zk-STARKs, on the other hand are Post-Quantum system meaning that even if Quantum-computers become powerful and ubiquitous they will not have an advantage, compared to classical computers, in breaking zk-STARKs. Anyway they have a noteworthy downside, as in the proof being too enormous. Their problem is their storage requirements. STARKs are doubly scalable, which means the proof verification is exponentially faster than the original computation’s time but the drawback is the size of the proof they create being too large, possibly 2 or 3 orders of magnitude more than those produced by zk-SNARKs. One example : StarkWare solves the inherent problems of scalability and privacy of blockchains. Using STARK technology, they generate a full proof-stack to produce and verify computer integrity tests. They utilise STARKs to batch transactions into a single proof that is verified on Ethereum. Matt Taylor states that the present iteration of StarkDEX demonstrates the viability of using STARKs for the scalability of Layer-2 by showing a substantial rise in the amount of blockchain transaction. The idea of zk-STARKS was proposed by Eli-Ben Sasson, a professor at the Technion-Israel institute of Technology. zk-STARKS provide proofs that can be verified a lot quicker than zk-SNARKS. At the present time, Z-cash and Ethereum are on the whole considering to utilize zk-STARKS. zk-STARKS have solved the trusted setup issue. They have totally expel the requirement for multiple parties to create the private key required for the string. Rather everything needed to produce the proofs is public and the verifications are generated from arbitrary numbers. zk-STARKS actually removed the necessity in zk-SNARKS for unbalanced cryptography and rather utilizes the hash fuctions like those found in Bitcoin mining. In addition, they ought to have longer timeframe of realistic usability as far as their crytographic resilience than zk-SNARKS. However, there are some impediment of zk-STARKS, the main issue with zk-STARKS is their size. The verifications it uses are basically too enormous to use in many blockchains as they stand. As indicated by Vitalik Buterin, zk-STARKS will result in proofs of a couple of hundreds kilobytes versus the 288 bytes seen in zk-SNARKS. The Difference Between zk-STARKS and zk-SNARKS. https://preview.redd.it/k1fap29yd4m31.png?width=411&format=png&auto=webp&s=769ef7be2646a2d0ac31a5334f7e7249e2e2e246 Source : The Medium - Coinmonks The complexity of communication : With the computation’s expanded complexity, the zk-SNARKS communication complexity also increases linearly, whereas zk-STARKs develops in the opposite direction and grows slowly as the computation size grows.The graph above shows that the communication required by the zk-STARKs to complete the calculation rises much slower than zk-snarks as the underlying evidence increases in complexity. Source : The Medium - Coinmonks The complexity of the verifier : zk-STARKs slightly widening with the development in computation size. On the other side, for confirmation evidence, zk-SNARKs requires less time than zk-STARKs. zk-STARKs, for instance need up to 100 ms to verify and zk-SNARKs need only up to 10ms. The graph above illustrates the the time taken by the zk-STARK to verify an evidence rises very slowly compared to the zk-SNARK as the underlying evidence increases in complexity. Overall these two protocols have excellent potential in the cryptocurrency globe and can be a breakthrough avenue for mainstream implementation. Both conventions are truly needed steps to protect our privacy. Reference https://www.technologyreview.com/lists/technologies/2018/ https://www.google.co.uk/amp/s/themerkle.com/mit-review-acclaims-zk-snarks-but-zk-starks-may-steal-the-show/amp/ https://ethereum.stackexchange.com/questions/59145/zk-snarks-vs-zk-starks-vs-bulletproofs-updated https://www.binance.vision/blockchain/zk-snarks-and-zk-starks-explained?amp=1 https://applicature.com/blog/blockchain-technology/can-zk-snarks-and-zk-starks-solve-privacy-issues https://eprint.iacr.org/2018/046.pdf https://medium.com/coinmonks/zk-starks-create-verifiable-trust-even-against-quantum-computers-dd9c6a2bb13d https://blog.0xproject.com/starkdex-bringing-starks-to-ethereum-6a03fffc0eb7 |
Funding Type | Daily Limits | Time Frame | Fee | Verification |
---|---|---|---|---|
Electronic Funds Transfer | Min $250, Max $10,000 | 5 Business Days | 5% | required |
Interac e-Transfer | Min $500, Max $5,000 | Next Business Day | 2% + $5 | required |
Interac Online | Min $50, Max $2,000 | Instant (but may be held 24 hours by security) | 1.5% (min. $5) | required |
Bank Wire | Min $100,000, Max $500,000 | 2-4 Business Days | Free | required |
Crypto Capital | Min $500, Max $500,000 | 24 hours | Free | required |
Funding Type | Daily Limits | Time Frame | Fee | Verification |
---|---|---|---|---|
Interac Online | Min $100, Max $2,000 | Instant (withheld for 3 days) | 2.5% | not required |
Intac e-Transfer | Min $100, Max $3,000 | 1-3 days (withheld 0-7 days) | 5% | required |
Flexepin | Min $20, Max $500 | instant | 2.5% | required |
Bank draft | Min $1000, Max $9,000 | 0-2 days (withheld 0-5 days) | 0.25% | required |
Money Order | Min $100, Max $1,000 | 0-2 days (withheld 0-5 days) | 0.25% | required |
Wire transfer | Min $10,000, Max $300,000 | 0-1 day (withheld 0-2 days) | 0.5% | required |
ETH: 0x4e03Bf5CCE3eec4Ddae4d3d6aAD46ca4f198AeD6 BTC: 1GqWMZRRygRJJWYYTWHkAVoRcgyQHjgBMZ XMR: 42Y1S1KBoPk381kc7hA68zaiC78BxMoCADjLrFcTdWiE7ejhZc49s1t9i7P2EmTnHsLDiKoSUiogCbLVHXRJxjrCT4WG8ic XRB: xrb_1bpzh745s9kzk8ymfnks3jtdi65ayumdstokzd4yw4ohu3fopxmiocjcntcu
When bitcoin arose as a viable digital peer-to-peer payment system in 2010, the average time for a bitcoin transaction was around 10 minutes while the average transaction fee was only a few cents. Today, due to the increased activity on the blockchain, the average confirmation time has shot up to 116 minutes, according to the most recent data from blockchain.info . Find out the most actively traded coin on Binance. Get Binance total trading volume, trading fees, pair list, fee structure, and other cryptocurrency exchange info. 🎉 Our October 2020 Monthly Cryptocurrency Report is here🎉 The rise of Bitcoin, total crypto market cap yearly-high & much more! For example, on the Bitcoin blockchain, a block is mined on average every 10 minutes, and Kraken only credits Bitcoin deposits to a client’s account after 6 confirmations, which takes approximately 60 minutes. However, sometimes it can take Bitcoin miners 30 or even 60 minutes to mine a single block (1 confirmation). This is outside of Kraken ... Binance vs Coinbase (pro) Coinbase Pro is Coinbase’s trading platform. It is one of the leading exchanges around in terms of reputation and adoption. Aside from the limited availability of the platform worldwide (supports 103 countries), the platform charges a 0.25% trading fee which is 2.5 times of what Binance charges. At the time of writing, Binance charges an average fee of 0.1% on each trade that a user makes. Those who choose to pay via the Binance token can get a 50% discount on the trading fee, which is absolutely great news. These are surely some of the lowest fees available at this time. Withdrawal fees tend to vary for each digital currency. For instance, 0.0005 is charged for Bitcoin withdrawals ... Bitcoin Fees Guide Summary. Bitcoin transaction fees (sometimes referred to as mining fees) allow users to prioritize their transaction (sometimes referred to as tx) over others and get included faster into Bitcoin’s ledger of transactions known as the blockchain.. To determine whether to include a transaction in the blockchain is worth their while, miners will take a look at which ... Litecoin Average block time (minutes) Chart. Transactions Block Size Sent from addresses Difficulty Hashrate Price in USD Mining Profitability Sent in USD Avg. Transaction Fee Median Transaction Fee Block Time Market Capitalization Avg. Transaction Value Median Transaction Value Tweets GTrends Active Addresses Top100ToTotal Fee in Reward On Bitcoin’s blockchain, the transaction fee is decided by the free market forces. Free market forces mean anyone is free to set their own transaction fee and can send transactions. In a way it is good but it has its disadvantages too when you have less space. By less space I mean the blocks of Bitcoin are only as big as 1 MB which means it can take only those many transactions in total. And ... What is the Average Bitcoin Confirmation Time? There is a greater than 60% chance your transaction will be confirmed within 10 minutes if you pay a high enough fee: Having an Issue With Your Wallet? Some wallets are not updated to send transactions with the proper fee. Our guide on the best bitcoin wallets features wallets with good fee estimators. Read it here! Is your Bitcoin Transaction ... How to Speed Up Blockchain Confirmation Times. The higher the fee you pay, the more likely your transaction will be confirmed in a timely manner (there is a 60 percent chance that it will take 10 minutes or less). However, if your transaction remains unconfirmed, the recommended wait time is 72 hours before sending it again.
[index] [21887] [22867] [20615] [10867] [5134] [22729] [2615] [9186] [17466] [23119]
#EC24 #EarnCrypto24 #binance First Create Main Account with my Link Must Create New account transfer your coins from old account to New One trade and get Hug... BREAKING NEWS!!! PROOF BITCOIN MANIPULATED BY BINANCE AND COINBASE!! IS $8'500 THE TARGET!!? 🔥 Bybit BONUS FREE NOW: https://bybit.com/a/MMCrypto (for Experi... (Please note: ETH and BTC transactions are having a lot of congestion right now and may take more than an hour to arrive to your ETH or BTC wallet on Binance, so don't panic.) Sign up at https ... Binance vs Bittrex compared side-by-side to determine which exchange is best for trading cryptocurrency. After reviewing each exchange, there is a clear winner for buying and selling altcoins. Our analysis begins with coverage of the SegWit2x debate over increasing the Bitcoin block size from a 1 MB to a 8 MB limit in order to decrease transaction times and ease the increasingly heavy ... You should not take my opinion as financial advice. You should always do your research before making any investment. You should also understand the risks of investing. This is all speculative ... If you're looking at buying Bitcoin then watch this video and i'll show you how to purchase and buy Bitcoin without any fees. Coinbase.comm charges fees for every transaction whether you're ... Coinbase, Binance, & Bittrex - Which Crypto Exchange To Use in 2019 - Duration: 41:22. ... Cash Out Your Bitcoin And Crypto For FREE Using GDAX (CoinBase Pro) - Duration: 19:50. CryptoRobert ... confirm unconfirmed bitcoin transaction Solution not more stuck and Missing btc transactions best Bitcoin Transaction Accelerator : https://bitcointransactio... confirmbtc.bid Bitcoin Transaction confirm 226 views 3:49 How transactions are verified in Bitcoin Blockchain - Longest chain rule explained - Duration: 5:08.